Visualizing Web Images Using Fisher Discriminant Locality Preserving Canonical Correlation Analysis
نویسندگان
چکیده
منابع مشابه
Visualizing Web Images Using Fisher Discriminant Locality Preserving Canonical Correlation Analysis
A novel dimensionality reduction method, Fisher Discriminant Locality Preserving Canonical Correlation Analysis (FDLPCCA), for visualizing Web images is presented in this paper. FDLP-CCA can integrate two modalities and discriminate target items in terms of their semantics by considering unique characteristics of the two modalities. In this paper, we focus on Web images with text uploaded on So...
متن کاملDiscriminant Locality Preserving Projection
In this study, we proposed an improved LPP method named Scatter-Difference Discriminant Locality Preserving Projection (SDDLPP). It considers discriminant information by maximizing the scatter-difference, which makes it have better classification capability. SDDLPP also avoids the singularity problem for the highdimensional data matrix and can be directly applied to the small sample size proble...
متن کاملKernel Fisher Discriminant Analysis with Locality Preserving for Feature Extraction and Recognition
Many previous studies have shown that class classification can be greatly improved by kernel Fisher discriminant analysis (KDA) technique. However, KDA only captures global geometrical structure and disregards local geometrical structure of the data. In this paper, we propose a new feature extraction algorithm, called locality preserving KDA (LPKDA) algorithm. LPKDA first casts KDA as a least s...
متن کاملFisher Locality Preserving Projections for Face Recognition ?
In this paper, a novel dimensionality reduction method termed Fisher Locality Preserving Projections (FLPP) is proposed by introducing the maximum scatter difference criterion (MSDC) to the objective function of Locality Preserving Projections (LPP). FLPP not only inherits the advantages of LPP which attempts to preserve the local structure, but also makes full use of class information and orth...
متن کاملFisher Linear Discriminant Analysis
Fisher Linear Discriminant Analysis (also called Linear Discriminant Analysis(LDA)) are methods used in statistics, pattern recognition and machine learning to find a linear combination of features which characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2017
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2016pcp0005